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Hypothesis

•The pictorial representation of the relationship between potential and input is 
many horizontal levels in the shape of Sierpinski's triangle; a fractal.

•The relationship between potential and stop time is inverse, nonlinear, and 
has a large inconsistency. This inconsistency manifested as a protrusion 
from the expected curve of the graph (Graph 5), evidenced as a number with 
lower stopping time but an irregularly large potential. Consequently, the 
potential of the numbers around it also rose because of this number; 
reflected by a horn shape on the same graph.

•The functional relationship between input and stop time indicates curvature 
radiating from two points (Graph 4) and is attributable to the numerous 
square-root functions embedded in the data. 

•The research utilized numbers between 2 and 1,048,572 which is the limit 
on an excel workbook. The summation  of factor totals for numbers one less 
than multiples of four were 1/4 of their counterparts for all integers except for 
2. 2 had none because all the numbers were odd. 

Introduction
Investigate the prime factorizations of certain numbers. A program will be written in python (see buddy board) to 
find the prime factorization of over a million numbers. This program will also export the prime factorizations to a text 
file. Because of the syntax of the program, the text file will have to be edited to make the delimiters consistent. 
Delimiters are what separate the columns in a text file and will come into play later. To make this edit, a simple find 
and replace will suffice. Then the text file will be imported into an excel spreadsheet. This is where delimiters are 
going to be important. I will tell excel that the characters used as delimiters should not be included in the data and 
define where the column dividers go. Then in the spreadsheet, numbers with more than one two in the prime 
factorization will be identified. Then one will be subtracted from these numbers and the resulting numbers will be put 
in a group, "desired". The prime factors will be tallied for both the "desired" numbers and all of the numbers. Then I 
will look for similarities and differences in the tallies. 

Compare trends and patterning of prime factorizations of  3x term in odd-numbered Collatz input by 
subtracting 1 from previous even-numbered output. Create a ratio between the 3x terms and all of the inputs for 
each specific prime factor. Then compare this ratio to the ratio of 3x terms to all inputs. If the ratios are different, then
the 3x terms had a significant effect on the prime factorization.

Devise a method of calculating "Collatz Potential". Potential will aim to represent the ability of an input to get to 
one in the Collatz sequence. Then "potential" will be plotted against stopping time of an input, and the input itself. 
Stopping time will also be plotted against the input. Then these graphs will be analyzed for conclusions.

Compare and analyze Collatz Potential against stop time and the Collatz input. Make graphs comparing potential 
against input, and potential against stop time. Also graph stop time against input. Then determine and classify the 
shape of the graph. Determine the cause and meaning of this shape.

Methods
I developed the "potential" concept because I was inspired to create a new method of 
analyzing the Collatz Conjecture when I was doing my original experiment. It is meant to 
help identify underlying patterns in an input.

Although the Potential calculations were highly successful, my hypothesis was not 
supported.  The stated ratios were equal. They both equaled ¼. 

The Potential calculations of my experiment went very well and produced many interesting 
patterns. After calculating potential, some patterns emerged. Potential was compared with 
two other data points - the Collatz input, and the stop time for that input. When potential was 
compared to input, graph 3 occurred. It is interesting to note, the points are in the shape of 
Sierpinski's triangle, as shown in figure 1. Sierpinski’s triangle is a common fractal created 
by repeatedly removing increasingly smaller triangles from one large one. The fact that there 
is such a huge link from the Collatz Conjecture to another field of mathematics means that 
there is another chance to prove it or to find a pattern.  The potential of a given input is 
directly proportional to the number of 2s in the prime factorization of a number, i.e., nc.
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This “bubbles up” the numbers with more twos as prime factors to the top of the triangle. 
Numbers with one less two in the prime factorization will have approximately half as much 
potential, leading to perfect spacing in the x direction. Why are potentials similar in the y 
direction? As numbers get larger, their potential, which is directly proportional to the number 
of 2s in their prime factorization, renders the remaining terms with less significance.  This 
means that numbers with the same amount of twos in their prime factorization will have 
more closely aligned potential.

As potential is plotted against stop time, another pattern emerges. Depicted in graph 5, it is 
nonetheless difficult to describe. The graph looks like a standard negative exponential curve, 
with a large horn situated in the middle. A gap is evident between the lower values and the 
horn. The gap spans from about 50 to 100 in the y direction.  With lower value inputs in 
Collatz sequence, it is much easier to get to one simply because these values are closer to 
one. The potential is high for these numbers simply because ½ the potential of the next 
number term is a more significant term in lower values (because as nc approaches 1, the 
term nc-1 is not the significant term . When you get a little bit higher though, the number of 
twos in the prime factorization matters a lot more than the potential of the next number. This 
is why the potential drops here. The potential comes back up in a jut out further up. This part 
of the graph seems centered around the number 128 which has a high potential. 

This causes the numbers around it to have a higher potential, but not as high as the 
potential of values at the lower end.

Stop time was plotted against input. This produced graph 4. The shape depicts many curves 
radiating from two points on the y-axis. This graph was hard to explain by itself, so a stop-
time frequency graph was created. Graph 6 shows two major peaks at 39 and 122 stop time 
(stop time is how many steps a specific input in the Collatz sequence takes to output 1). 
These values were slightly above the two radiating points. From the frequency graph, it 
seemed like these two points were just popular. However, the curve patterns can be 
explained from related numbers in the Collatz sequence. Consider a number which can be 
divided by 2 in the Collatz sequence many times. The output (next input) has a stop time 
one less than the previous and the graphed value would be half of the previous. As a looped 
input/output this creates a square-root graph. These are the curve patterns on the graph.

Throughout this research, some patterns have become clear. First, it is easier to look at the 
Collatz Conjecture differently. Rather than stating that any number will get to one through 
the sequence, it can be stated that any number can be reached by starting with one and 
doing the inverse of the Collatz sequence. By making a tree using this approach, patterns 
can be seen more clearly.

There are big main branches. This happens on big chains of even numbers, multiplying by 
two from the center. Also large branches that don't branch off at all are multiples of three 
because they can never evenly subtract one and divide by three. There are underlying 
patterns from the analyses of this research. Branches after the very first can be one of three 
set lengths before splitting. Branches can be 1, 2, or infinite even steps long, until a split. 
After looking for the cause of this, it was found. Prime factorization does play a part in it. 
Branches can be classified by the very first node on that branch after a split leading to that 
branch (see proofs).

The Potential research could also help prove the Conjecture. The patterns found could very 
well help find relevant values for inputs in the Collatz sequence without even applying the 
function on said inputs. If an input has a potential, then it must reach one because of the 
way Collatz Potential is defined. If a potential can be calculated for all numbers, then they all 
eventually get to one in the Collatz sequence.

There were also patterns found between stopping time and input. The graph of this can be 
used as a tree also. If the pattern can be isolated, the conjecture could be very easily proven 
or disproven. All of these patterns could help contribute to further Collatz research, and 
eventually a proof.

Potential was not the original goal of this experiment. At first I was focusing entirely on prime 
factorization. However, working with prime factorization inspired me to develop a new way of 
working with the conjecture. I had to totally reprogram myself to look at the conjecture in a 
different way as shown in  figure 2.

Discussion

Results

Consider a ratio of the following: 

•totaled individual prime factors of numbers which, when inputted, lead to shorter stopping 
times of the Collatz sequence, (  ) to, 
•the totaled individual prime factors of all numbers inputted, (  )  

=

Also consider the following ratio: 

•the amount of numbers that shorten the stopping time, (  ) to, 
•all numbers inputted, (  ) 

=

Based on the bulleted objectives above, the research hypothesizes the ratios will not be 
equal,   ≠ 
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Proof 1:

let x mod 3 = 2 

let m, n, and p be positive integers 

x can equal 3n + 2 because 3n mod 3 will always be zero because for any integer n, it will be multiplied by three before the mod
3 function, 2 mod 3 = 2. So, (3n + 2) mod 3 = 2 because mods can be added.

The next step in the inverse Collatz sequence is to multiply by two because x ≠ 3m + 1 because  3m + 1 mod 3 = 1 ≠ x mod 3 = 
2.

after this step, x = 6n + 4 because 2(3n + 2) = 6n + 4.

x can equal 3(2n + 1) + 1 because 6n = 3(2n) and 3 can be subtracted from the four and substituted into the parenthesis giving 
3(2n + 1) + 1

x can equal 3p + 1 because 2n + 1 is still a positive integer and can be replaced by p

since x can equal 3p + 1, the next inverse Collatz sequence step could either be (x-1)/3 or x*2 therefore, the branch splits and
there was only one even step in between.

Proof 2:

let x mod 3 = 1 

let m, n, and p be positive integers

x can equal 3n + 1 because 3n mod 3 will always be zero because for any integer n, it will be multiplied by three before the mod
3 function, 1 mod 3 = 1. So, (3n + 1) mod 3 = 1 because mods can be added.

After a split an even number is produced by multiplying by two, and an odd number is produced by subtracting one and dividing
by 3. This is because in the regular Collatz sequence, only odd numbers are multiplied by three and added to one. The even 
number can never be 3n + 1 because after the split number is multiplied by two, it produces a 6m + 2 number because split 

numbers are always 3m + 1 and 2(3m + 1) = 6m + 2. Therefore because x = 3n + 1, x must be odd.

Because x is odd, it cannot be a branch number because all branch numbers must be even. They must produce an odd number 
from the (x-1)/3 operation because in the regular Collatz sequence, only odd numbers do the inverse operation of that one –

3x + 1.

The next step in the inverse Collatz sequence is to multiply by two by process of elimination

after this step, x = 6n + 2 because 2(3n + 1) = 6n + 2.

x mod 3 = 2 because (6n + 2) mod 3 = 2 because 6n mod 3 = 0 and 2 mod 3 = 2 and 0 + 2 = 2

The next step in the inverse Collatz sequence is to multiply by two because x ≠ 3m + 1 because  3m + 1 mod 3 = 1 ≠ x mod 3 = 
2.

after this step, x = 12n + 4 because 2(6n + 2) = 12n + 4.

x can equal 3(4n + 1) + 1 because 12n = 3(4n) and 3 can subtracted from the four and substituted into the parenthesis giving 
3(4n + 1) + 1

x can equal 3p + 1 because 2n + 1 is still a positive integer and can be replaced by p

since x can equal 3p + 1, the next inverse Collatz sequence step could either be (x-1)/3 or x*2 therefore, the branch splits and
there were two even steps in between.

Proof  3:

let x mod 3 = 0

let m and n be positive integers.

x  can be thought of as 3n because 3n mod 3 = 0

The next step in the inverse Collatz sequence is to multiply by two because x ≠ 3m + 1 because  3m + 1 mod 3 = 1 ≠ x mod 3 = 
0.

after this step x = 6n

The next step in the inverse Collatz sequence is to multiply by two because x ≠ 3m + 1 because  3m + 1 mod 3 = 1 ≠ x mod 3 = 
0.

after this it becomes obvious that the cycle will repeat because x mod 3 will remain zero and be infinitely multiplied by 2

Proofs
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Data Table 1-Overall, there was no correlation between all the numbers one less than numbers with more than one 2 in their 
prime factorization. The ratio of .25 at the bottom is showing that each of the tallies is one quarter of the total tally of the
specific prime factor. This excludes 2 which was counted 0 times because all the numbers one less than numbers with more 
than one 2 in their prime factorization were odd.

Graph 3-Input vs. 
Potential-The 
relationship between 
input and potential. 
This graph forms the 
shape of Sierpinski’s 
triangle. This is shown 
in figure 1. The 
triangle is formed from 
potential’s use of 2s in 
prime factorization. 
The exact rows occur 
because of the 
tendency of numbers 
with higher potentials 
to have a similar 
potential with other 
numbers. 

Graph 6-The amount 
of times a certain 
number is a stopping 
time. There are 2 major 
peaks, at 39 and 122. 
These are right above 
the radiating points on 
graph 4.

Graph 5-The relationship between potential and stopping time. The large shape of the graph is an 
exponential curve. However, there is a “horn” sticking out. The horn seems to be centered around 128. 
This is a common stopping time for which a number with a high potential is in. This raises the 
potential for all the numbers that hit that number in the Collatz sequence., usually the ones around it. 
The vertical bars can once again be explained by the tendency for higher numbers to have a similar 
potential.
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Stop Time Frequency

Total Occurrence of Prime Factors
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53

All Numbers 
between 2 
and 1048572

1048556 524283 262143 174766 104864 87391 65550 58271 47684 37475 34982 29161 26253 25008 22841 20217

Ratio to Total 
Numbers 
(Three 
Decimal 
Places)

1.000 0.500 0.250 0.167 0.100 0.083 0.063 0.056 0.045 0.036 0.033 0.028 0.025 0.024 0.022 0.019

All Numbers 
One Less 
Than a 
Multiple of 4

0 131071 65533 43692 26214 21844 16383 14563 11916 9360 8738 7281 6553 6243 5699 5041

Ratio to 
Occurrence 
in all 
numbers 
(Three 
Decimal 
Places)

0.000 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.249
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Figure 1-The resemblance of graph 3 
to Sierpinski’s triangle. On the right is 
a screenshot of graph 3 with lines 
drawn on top of it. On the bottom is 
Sierpinski’s triangle. There is a clear 
resemblance, more information is in 
the results section.

Graph 4-The relationship 
between  input and stop time. 
There are multiple square 
root functions radiating from 
2 points on the y-axis. This is 
caused by long branches of  
even steps in the Collatz 
sequence. On the long 
branches,  the input is cut in 
half every step, and  the stop 
time goes down by 1. This is 
what causes the square root 
curves. As far as the research 
found, the radiating points 
are just common stopping 
times as seen on the 
frequency graph, graph 6.

Figure 2-Collatz 
Tree. The tree 
visualizes 
branch length. 
(refer to proofs, 
for color code) 
It also helps 
visualize a 
different 
perspective of 
looking at the 
Collatz 
conjecture, 
starting from 
one.
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Total Occurrences

Graph 2-Occurences of 
Prime Numbers (excluding 
2) in Factorizations of 
Numbers 1 less than 
Multiples of 4 Between 2 
and 1048572-The number 
of prime factors counted in 
numbers one less than 
numbers that contain more 
than one 2 in their prime 
factorization. The trend line 
is a power function with an 
𝑅2 value of over .99. Notice 
how similar it is to graph 1. 
If it is looked at closely, it 
would be seen that each 
value is a quarter of that in 
graph 1. The prime 2 is 
excluded because all the 
numbers counted were 
odd. 

Graph 1-Occurrences of Prime Numbers in Factorizations between 2 and 
1048572- The number of total prime factors counted. There is a strong 
correlation. The trend line is a power function with an 𝑅2 value of over .99 

The Collatz Conjecture
The Collatz conjecture is an unproven conjecture in mathematics. It states that any initial 
input to the Collatz sequence will give an eventual output of one. The Collatz sequence is a 
mathematical sequence that takes an initial input and does one of two things to that input; if 
the input is even, divide by 2 to get the output, if the number is odd, multiply by 3 and add 1. 
Consider:

56 is even;
56/2=28;

Output = 28
21 is odd;

21*3+1=64;
Output = 64

The output will be used as the next input for the function to run again, until the output 
reaches 1. The function continues until the output is 1.

The Collatz sequence function can be expressed as:

Even numbers result in an input to divided by 2. This has the effect of shortening the 
stopping time. It is important to note, for every two as an input’s prime factor, its Collatz 
sequence will approach 1 faster. Odd inputs always produce an even output. However, the 
amount of twos in the prime factorization of the next output cannot be predicted. This is why 
most research concerning Collatz Conjecture focuses on odd inputs.

Impact
The importance of proving (or disproving) the Collatz sequence is due to the mathematical 
fields it crosses. Research on the conjecture has been considered in number theory, ergodic
theory and dynamical systems, computational theory, and probability theory. The problem 
seems very simple, utilizing nothing more than positive integers and elementary operators. 
However, it evolves into a complex dynamical system. John Conway questions if the 
problem can even be solved through computation in his paper "Two Undecidable Variants of 
Collatz's Problems". 

Past research
Past work has considered both the theoretical and probable side of the Collatz Conjecture. 
This includes Conway's paper above. Other work focuses on parallels and simplifications of 
the problem. These include the "qx+1" problem (Steiner), and the "3x+d" problem (Belaga
and Mignotte). These problems were solved and showed that statements similar to the 
Collatz conjecture could be proven.

Objectives
This research focused on the experimental side of the conjecture by looking at shared traits 
by numbers linked in the sequence.

There are three objectives to this research:
•Identify correlations between prime factorization of all inputs to the Collatz sequence that 
results in outputs with significantly shorter stopping times
•Determine the significance in patterning a Collatz numeral based on its Collatz potential
•Identify pathways to proving or disproving the Collatz conjecture based on the previous two 
objectives

Methodology
The methodology identifies the prime factors for any given even-numbered Collatz input, 
specifically for that set of numbers containing multiple 2’s, (as the stopping times are 
functionally the shortest) and from which one is subtracted (i.e. to make odd-numbered) The 
total number of specific prime factors in the odd-numbered input is compared, as a ratio, to 
the total number of specific prime factors in all numbers. Then "potential" is developed 
based on the information gained from the experiment. This will help find new ways of 
examining the conjecture and potentially proving or disproving it.

Background
It is unclear why numbers containing prime factors of multiple 2s are important in the Collatz 
sequence. In the sequence, an even number is divided by two, making it less probable that 
the sequence will diverge to infinity. The resulting output is closer to the desired sequence 
output of one and farther from infinity. 

After every odd sequence step, there must be an even step. However, if there is only one 
even step, the resulting final output is larger than the original odd input:

Let 3 be the input
c(3)=10
c(10)=5
5>3

If there is more than one even step, the resulting final output is smaller than the original odd 
input:

Let 9 be the input
c(9)=28
c(28)=14
c(14)=7
7<9

To produce more than one even step, there must be more than 1 two in the prime 
factorization, hence, the number must produce multiples of four as factors. The overarching 
question becomes, in the Collatz sequence, what kind of numbers, specifically odd numbers 
(note that even numbers producing these odd numbers have a very similar prime 
factorization), produce multiples of four?  

The input sequence of an odd number is multiplied by three, having essentially an 
insignificant effect on the prime factorization of the new number. However, once one is 
added, the sequence results in a potentially significant effect on the prime factors of the new 
input. This research aims to find the effect of the prime factorization of a number, specifically 
after the addition of one, on the Collatz Conjecture, and further, identify the numeric 
relationships, specifically within the prime factorizations between the inputs and resulting 
outputs of the Collatz sequencing resulting in new methods of analyzing the Collatz 
Conjecture.

odd isx  if13

even isx  if
2

x
 =c(x)  {

x

Early in this research, it became evident that a new mathematical function was necessary to better 
represent the patterns that were emerging, so the potential idea was developed. 

Collatz potential is a function of the number of twos in an input's prime factorization and the potential of 
the next even input in the Collatz sequence. Collatz potential is equal to the number of twos in an 
input's prime factorization minus one plus half of the potential of the "next input" in the sequence. 
Potential was specifically designed for even numbers because they lead directly to the input 
approaching 1. This means that "next input" really means the next even input. 

Potential equation form:

The number of twos in the prime factorization represents how quickly the input will approach 1. Every 
number will be even and have at least one 2, so one is subtracted to only count the twos that evens 
don't necessarily have in common. The second term of the potential calculation,  , incorporates the 
potentials of the next inputs. Inputs before those with high potentials generally also have high 
potentials.

This is true for low potentials also. Potential loosely represents the stop time of a Collatz input. Stop 
time is the number of steps in the Collatz sequence it takes for an input to reach 1. Collatz potential is a 
transition step between input and stop time to find a solid relationship between 'potential and them 
both. Potential's final goal is breaking a way for a function able to calculate something correlating to the 
stop time of an input without calculating the whole Collatz sequence for that 
input. 

If every number has a potential greater than zero (besides. 2 and one), the Collatz conjecture is proven 
because of the way the potential equation is designed. Even if potential can't be calculated for every 
number without going through its Collatz sequence, it could lead to a function that can do this. 

Developing Collatz Potential
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Figure 1 credit oftenpaper.net, Figure 2 credit Jason Davies, All other figures and graphs are credit the presenter.


